日程安排

Program at a Glance


时间 11月8日

(Asia/Shanghai,UTC+8)
活动安排
 
10:30 – 11:00 特邀演讲:杨强  “可信联邦学习
11:00 – 11:30

特邀演讲:刘洋  “联邦学习系统中效率-安全-性能平衡探索

11:30 – 12:00 特邀演讲:陈益强  “MetaFed:一种基于环形知识蒸馏的层次化对等联邦学习框架

12:00 – 12:30

特邀演讲:潘微科  “Cross-User Federated Recommendation


14:00 – 14:30 特邀演讲:  程勇   “联邦深度学习:最新进展和应用
14:30 – 15:00 特邀演讲:  于涵  “Contribution and Fairness-Aware Federated Learning
15:00 – 15:30 特邀演讲:  范晓亮   “数字教育领域的隐私计算应用初探
15:30 – 15:45 茶歇
15:45 – 18:00 IJCAI 2022 论文报告(12 min per talk + 3 min Q&A each)
  1. Dazhong Rong, Qinming He and Jianhai Chen. Poisoning Deep Learning Based Recommender Model in Federated Learning Scenarios
  2. Wei Wan, Shengshan Hu, Jianrong Lu, LEO YU ZHANG, Hai Jin and Yuanyuan He. Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection
  3. Hong Zhang, Ji Liu, Juncheng Jia, Yang Zhou, Huaiyu Dai and Dejing Dou. FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning Using Shared Data on the Server
  4. Rufan Bai, Haoxing Lin, Xinyu Yang, Xiaowei Wu, Minming Li and Weijia Jia. Mixed Strategies for Security Games with General Defending Requirements
  5. Xinyi Shang, Yang Lu, Gang Huang and Hanzi Wang. Federated Learning on Heterogeneous and Long-Tailed Data via Classifier Re-Training with Federated Features
  6. Qiang Shen, Haotian Feng, Rui Song, Stefano Teso, Fausto Giunchiglia and Hao Xu. Federated Multi-Task Attention for Cross-Individual Human Activity Recognition
  7. Yuezhou Wu, Yan Kang, Jiahuan Luo, Yuanqin He and Qiang Yang. FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
  8. Wenjie Li, Qiaolin Xia, Junfeng Deng, Hao Cheng, Jiangming Liu, Kouying Xue, Yong Cheng and Shu-Tao Xia. Achieving Lightweight Federated Advertising with Self-Supervised Split Distillation